首页 > 百科词典

算法

豆豆 百科词典 2022-10-02 23:16:04
计算机算法的简称,指完成一个任务所需要的具体步骤和方法。也就是说给定初始状态或输入数据,能够得出所要求或期望的终止状态或输出数据。算法+数据结构=程序,求解一个给定的可计算或可解的问题,不同的人可以编写出不同的程序,来解决同一个问题。   算法是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算,是对解题方案的准确与完整的描述。制定一个算法,一般要经过设计、确认、分析、编码、测试、调试、计时等阶段。   算法常常含有重复的步骤和一些比较或逻辑判断。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

历史

  算法的中文名称出自《周髀算经》;而英文名称Algorithm来自于9世纪波斯数学家花拉子米(比阿勒·霍瓦里松,波斯语:خوارزمی‎,拉丁转写:al-Khwarizmi),因为比阿勒·霍瓦里松在数学上提出了算法这个概念。“算法”原为“algorism”,意思是阿拉伯数字的运算法则,在18世纪演变为“algorithm”。欧几里得算法被人们认为是史上第一个算法。  第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。因为查尔斯·巴贝奇(Charles Babbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。  因为“well-defined procedure”缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了著名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要的作用。

特征

  以下是Donald Knuth在他的著作The Art of Computer Programming里对算法下的定义:  输入:一个算法必须有零个或以上输入量。   输出:一个算法应有一个或以上输出量,输出量是算法计算的结果。   明确性:算法的描述必须无歧义,以保证算法的实际执行结果是精确地符合要求或期望,通常要求实际运行结果是确定的。   有限性:依据图灵的定义,一个算法是能够被任何图灵完备系统模拟的一串计算,而图灵机器只有有限个状态、有限个输入符号和有限个转移函数(指令)。而一些定义更规定算法必须在有限个步骤内完成任务。   有效性:又称可行性。能够实现,算法中描述的操作都是可以通过已经实现的基本运算执行有限次来实现。

·形式化算法

  算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务,如计算职工的薪水或打印学生的成绩单。 一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。

算法的描述

  算法的描述方法可以归纳为以下几种:   自然语言;   图形,如N-S图、流程图,图的描述与算法语言的描述对应;   算法语言,即计算机语言、程序设计语言、伪代码;   形式语言,用数学的方法,可以避免自然语言的二义性。   用各种算法描述方法所描述的同一算法,该算法的功用是一样的,允许在算法的描述和实现方法上有所不同。

算法复杂度

 算法流程图 同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。

·时间复杂度

  1.时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。    2.时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。    一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。    在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。    按数量级递增排列,常见的时间复杂度有:    常数阶O(1),对数阶O(log2n),线性阶O(n),    线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),...,    k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

·空间复杂度

  与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作:    S(n)=O(f(n))    我们一般所讨论的是除正常占用内存开销外的辅助存储单元规模。讨论方法与时间复杂度类似,不再赘述。

算法的评价

  一个算法的优劣可以用空间复杂度与时间复杂度来衡量。   算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。时间复杂度用“O(数量级)”来表示,称为“阶”。常见的时间复杂度有: O(1)常数阶;O(log2n)对数阶;O(n)线性阶;O(n2)平方阶。   算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
上一篇:张兆庆
下一篇:集成电路

Copyright©2022 吾尊时尚 www.wuzunfans.com 版权所有

声明 :本网站尊重并保护知识产权,欢迎各位作者创作优秀作品,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。闽ICP备11008833号-10  

邮件联系方式: toplearningteam#gmail.com (请将#换成@)