命题
走天涯 百科词典 2022-09-22 02:32:58
命题(proposition),逻辑学上指表达判断的语言形式,由系词把主词和宾词联系而成;数学或物理学中的命题(problem),指要进行某种说明的问题。 中国古代,命题指所确定的诗文等的主旨。如宋·王禹偁《赠别鲍秀才序》:“公出文数十章,即进士鲍生之作也。命题立意,殆非常人。”还有拟题,出题目的含义,如明·王鏊《震泽长语·经传》:“古人作诗,必自命题。”《二十年目睹之怪现状》第七三回:“有一回,书院里官课,历城县亲自到院命题考试。”曹靖华《飞花集·谈散文》:“而我的座上客既不象威风凛凛的大主考,命题作文,也不带任何框框。”也指所出的题目;题目。如清·孙枝蔚《赋得东渚雨今足呈潞安司理李吉六》诗序:“司理公下车后分题试各邑士之能诗者,余适在家兄署中,欣闻体恤属吏及惠爱农民之意,正图形诸歌咏,因见命题,辄不揣荒陋,勉作二律,附邑士之末。” 在现代哲学、逻辑学、语言学中,命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象。命题不是指判断(陈述)本身。当相异判断(陈述)具有相同语义的时候,他们表达相同的命题。例如,雪是白的(汉语)和 Snow is white(英语)是相异的判断(陈述),但它们表达的命题是相同的。在同一种语言中,两个相异判断(陈述)也可能表达相同命题。例如,刚才的命题也可以说成冰的小结晶是白的,不过,之所以是相同命题,取決于冰的小结晶可视为雪的有效定义。 通常,命题是指闭判断,以区别于开判断,或谓词。在这种情况下,命题不是真的就是假的。哲学学派逻辑实证主义支持这一命题的概念。一些哲学家,诸如约翰·希尔勒,认为其他形式的语言或行为也判定命题。是非疑问句是对命题真值的询问。道路交通标志不通过语言和文字也表达了命题。使用陈述句也可能给出一个命题而不判定它,例如,在当老师请学生对某个引用发表意见的时候,这个引用就是一个命题(即它有语义)而这个老师并没有判定它。在上一段中,只给出了命题雪是白的,但没有判定它。
三种命题
1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。 2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。 3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。四种命题的相互关系
1.四种命题的相互关系:原命题与逆命题互逆,逆命题与逆否命题互否,逆否命题与否命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否。 2.四种命题的真假关系:(1)两个命题互为逆否命题,它们有相同的真假性。(2)两个命题为互逆命题或互否命题,它们的真假性没有关系。《几何原本》中的命题
欧几里德的《几何原本》中的被证明的命题,如下列48个命题: 1. 在一个已知有限直线上作一个等边三角形。 2. 由一个已知点(作为端点)作一线段等於已知线段。 3. 已知两条不相等的线段,试由大的上边截取一条线段使它等于另外一条。 4. 如果两个三角形有两边分别等于两边,而且这些相等的线段所夹的角相等,那么,它们的底边等于底边,三角形全等于三角形,而且其余的角等于其余的角,即那等边所对的角。 5. 在等腰三角形中,两底角彼此相等;并且,若向下延长两腰,则在底以下的两角也彼此相等。 6. 如果在一个三角形中,有两角彼此相等,则等角所对的边也彼此相等。 7. 在已知线段上(从它的两个端点)作出相交於一点的二线段,则不可能在该线段(从它的两个端点)的同侧作出相交于另一点的另二条线段,使得作出的二线段分别等于前面二线段。即每个交点到相同端点的线段相等。 8. 如果两个三角形的一个有两边分别等于另一个的两边,并且一个的底等于另一个的底,则夹在等边中间的角也相等。 9. 二等分一个己知直线角。 10. 二等分已知有限直线。 11. 由已知直线上一已知点作一直线和已知直线成直角。 12. 由已知无限直线外一已知点作该直线的垂线。 13. 一条直线和另一条直线所交成的邻角,或者是两个直角或者它们等于两个直角的和。 14. 如果过任意直线上点有两条直线不在这一直线的同侧,且和直线所成邻角和等于二直角,则这两条直线在同一直线上。 15. 如果两直线相交,则它们交成的对顶角相等。 16. 在任意的三角形中,若延长一边,则外角大於任何一个内对角。 17. 在任何三角形中,任何两角之和小於两直角。 18. 在任何三角形中,大边对大角。 19. 在任何三角形中,大角对大边。 20. 在任何三角形中,任意两边之和大于第三边。 21. 如果由三角形的一条边的两个端点作相交于三角形内的两条线段,由交点到两端点的线段的和小于三角形其余两边的和。但是,其夹角大于三角形的顶角。 22. 试由分别等于已知三条线段的三条线段作一个三角形:在这样的三条已知线段中,任二条线段之和必须大于另外一条线段。 23. 在已知直线和它上面一点,作一个直线角等于己知直线角。 24. 如果两个三角形中,一个的两条边分别与另一个的两条边相等,且一个的夹角大于另一个的夹角,则夹角大的所对的边也较大。 25. 如果在两个三角形中,一个的两条边分别等于另一个的两条边,则第三边较大的所对的角也较大。 26. 如果在两个三角形中,一个的两个角分别等于另一个的两个角,而且一边等于另一个的一边。即或者这边是等角的夹边,或者是等角的对边。则它们的其他的边也等于其他的边,且其他的角也等于其他的角。 27. 如果一直线和两直线相交所成的错角彼此相等,则这二直线互相平行。 28. 如果一直线和二直线相交所成的同位角相等,或者同旁内角的和等于二直角,则二直线互相平行。 29. 一条直线与两条平行直线相交,则所成的内错角相等,同位角相等,且同旁内角的和等于二直角。 30. 一些直线平行于同一条直线,则它们也互相平行。 31. 过一已知点作一直线平行於已知直线。 32. 在任意三角形中,如果延长一边,则外角等于二内对角的和,而且三角形的三个内角的和等于二直角。 33. 在同一方向(分别)连接相等且平行的线段(的端点),它们自身也相等且平行。 34. 在平行四边形面片中,对边相等,对角相等且对角线二等分其面片。 35. 在同底上且在相同两平行线之间的平行四边形彼此相等。 36. 在等底上且在相同二平行线之间的平行四边形彼此相等。 37. 在同底上且在相同二平行线之间的三角形彼此相等。 38. 在等底上且在相同二平行线之间的三角形彼此相等。 39. 在同底上且在底的同一侧的相等三角形必在相同二平行线之间。 40. 等底且在底的同侧的相等三角形也在相同二平行线之间。 41. 如果一个平行四边形和一个三角形既同底又在二平行线之间,则平行四边形是这个三角形的二倍。 42. 用已知直线角作平行四边形,使它等于已知三角形。 43. 在任何平行四边形中,对角线两边的平行四边形的补形彼此相等。 44. 用已知线段及已知直线角作一个平行四边形,使它等于已知三角形。 45. 用一个已知直线角作一平行四边形使它等于已知直线形。 46. 在已知线段上作一个正方形。 47. 在直角三角形中,直角所对的边上的正方形等于夹直角两边上正方形的和。 48. 如果在一个三角形中,一边上的正方形等于这个三角形另外两边上正方形的和,则夹在后两边之间的角是直角。